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1. Introduction

The capability to assess the functionality of a given structure or sub-system is tremendously
important to the civilian and military communities. Economic pressures, enhanced performance
requirements, liability issues, and other factors force structural owners to consider strategies for
reducing operational costs, including maintenance. Historically, such strategies have relied upon
human inspection or rigid maintenance schedules with little regard to more automated
methodologies. With the rapid advances in sensor technology, structural materials, and data
processing and management, structural owners have increasingly embraced research and
development in advancing the field. A good example of the evolving approaches taken by
structural owners is the United States Navy, which has begun to transition the maintenance of all
of its civil, marine, and aerospace structures towards a condition basis. This means that
maintenance and structural assessment will be done as necessary, not at a fixed schedule. Such a
paradigm shift, especially when coupled with reduced man-power initiatives, requires the
development of advanced, automated methods for assessing the health of the structure.

Several approaches have been developed over the last several decades within the traditional
non-destructive evaluation (NDE) field, such as radiography, thermography, and ultrasonic
inspection; an overview of such techniques may be found in Ref. [1]. Researchers have also turned
to the vibration domain, where some characteristic ‘““features” from the structure’s vibration
response are analyzed for indications of damage or degradation. In the vibration domain, the
majority of the literature has considered features derived from a modal analysis of the structure,
e.g., resonant frequency shifts, mode shape shifts, modal damping changes, flexibility, etc. The
literature expanse in this area is too vast to cite here, even representatively. A relatively recent
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good summary of various applications of modal-based methods to a wide variety of structural
assessment scenarios may be found in Ref. [2].

One structural sub-system studied frequently in the literature is moment-resisting connections,
often characterized by threaded fastener assemblies. Threaded fasteners are popular due to
advantages such as the ability to develop a clamping force and the ease with which they may be
disassembled for maintenance. It has been well documented that such fasteners loosen under
shock, vibration, or thermal loading, and a recent comprehensive discussion of these effects is
given in Ref. [3]. One recent excellent work presented a combined finite element and experimental
study of dynamic shear loading-induced loosening and showed that the minimum load required to
initiate loosening is lower than previously reported [4].

Because of the highly localized nature of bolt loosening and failure, most approaches in this
field have involved two- and three-dimensional finite element formulations, e.g., Refs. [5-7]. These
approaches are well suited to studying the fundamental nature of the problem and guiding the
design process. From a vibration domain structural monitoring perspective, the question is
whether these loosening effects may be detected indirectly through vibration measurements and
modal analysis of the vibration. In this work, an experiment and a corresponding simple model
are constructed to explore whether modal analysis (in terms of resonant frequencies and mode shapes)
is an appropriate tool for such a problem. A beam is bolted to supports at its edges, but springs encase
the bolts such that greater control over the clamping force is retained for study purposes. In other
words, the addition of a spring, while not an element normally added to such joints in practice,
facilitates much more precise user control over the effective preload that may be placed on the
connection. A simple non-linear model is proposed that globally describes the strength of connection
of the beam to its base in terms of an elastic boundary condition stiffness. This approach assumes that
only loads perpendicular to the axis of the joint are applied (no shearing), and consequently the effects
of friction are not included. Overall, the purpose is to provide a very simple model that globally
describes the connectivity condition in a generic way in the joint, and it is not the intent to model
specific local behaviors within the joint. The overall goal is to assess to first order whether a vibration-
based modal analysis may be used to assess joints subject to simple connectivity (clamping force) loss
where the connectivity is modelled by a simple non-linear stiffness function.

With this focus in mind, the transition from fully clamped to fully free is implemented at one
edge, and a modal analysis is performed at various steps along the way. We show that resonant
frequencies and mode shapes are relatively insensitive to clamping force changes over wide ranges
with a narrow region of sudden transition where there is greater sensitivity. This lack of
“smoothness” in transition suggests that modal properties may not be ideal features to use in
bolted joint health monitoring, especially from a prognostic point of view.

2. The model
2.1. Elastic boundary constraints

The overall system to be modelled is a thin aluminum beam. The equation governing free
vibrations of an Euler—Bernoulli beam is given by

Wyxxx + Wi = Oa (1)
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where w(x, f) is the vertical displacement non-dimensionalized by beam length L, x is the axial
position coordinate along the beam non-dimensionalized by beam length L, and ¢ is time non-

dimensionalized by +/pAL*/EI, where p is the beam mass per unit volume, 4 is the cross-
sectional area, E is Young’s modulus, and [ is the area moment of inertia. All properties are
assumed uniform along the beam.

For a beam whose ends are fastened by bolts, the exact boundary conditions are very
complicated, as evidenced from the details of the finite element studies cited in the first section.
The main purpose in developing a model in this work is to capture the most simple relevant
behavior describing the loss of clamping force on the beam boundary as the fastener loosens,
without regard to the exact mechanism of loosening or localized details of the process evolution.
A quasi-linear model utilizing generalized elastic boundary constraints is proposed that captures
this behavior and matches well with experimental observations (to be presented later). In contrast
to detailed finite element approaches, this approach is computationally inexpensive and provides a
convenient “testbed” for assessing whether various features (such as modal properties) are
appropriate for clamping force reduction.

Indeed, elastic constraint boundary conditions could be construed as the most general linear
boundary condition, as specific familiar boundary conditions such as “clamped” or “free’” may be
easily derived from limiting cases of these general elastic constraints. Variations on elastic-type
formulations have been used in the literature previously for other purposes, e.g., Ref. [8]. Fig. 1
shows the boundary of a beam subject to general linear elastic constraints in shear, denoted by the
Ky spring, and in moment, denoted by the rotational K, spring. A static moment and y-direction
force balance acting on the typical edge element shown is [9]

Z Fy-direction =0=-V+ KVLW; Z Mo =0=M — KMWx - VL dxa (2)

where forces in moments in other planes are ignored and the usual linearity assumptions implicit
in Euler—Bernoulli theory are maintained for model consistency. As dx— 0 in the limit, the general
boundary conditions for the moment M and shear force V, applicable at the boundaries, are thus

M = Kyw,, V =—KyLw. (3)

Ku

LAX Ky

Fig. 1. Elastic edge constraints for an Euler—Bernoulli beam.
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For Euler—Bernoulli beams, the internal bending moment and shear force are given by

EI EI
M= — T Wxxs V= - E Wxxx- (4)

Equating Eqgs. (3) and (4), the clastic boundary constraints may be re-expressed as
Wxx = —0Wx, Wxxx = ﬁW, (5)

where o = Ky, L/EI and B = Ky L*/EI. As both Kj; and Ky approach zero in the limiting case
(o, f—0), the classical free end boundary condition is obtained. As these values approach infinity
(o, f— o0), the classical clamped end boundary condition is obtained.

The values of o and f in a purely linear formulation would be constants, as they reflect the
stiffness values of the respective springs. Bursi and Jaspart [6], however, showed how the clamping
force and clamping moment present in a fastener are strongly non-linear functions of fastener
axial strain during transition from the elastic to inelastic regime. The slopes of the force/
displacement and moment/rotation curves presented in their work reflect the effective stiffness
present, and the dominant characteristic of these curves is that the slope is initially extremely large
and goes to zero as the forces and moments saturate during initial plastification. This non-
linearity may be readily incorporated into the current model by allowing « and f to be modified by
an appropriate function that trends to reflect the elastic-to-plastic transition of a fastener
assembly. This function, denoted by K, is proposed to be of the form

K(f) = tanh(xf) [p + (1 — p) tanh <K : jjf>] (6)

where k and p are tuning parameters, and f is a measure of the ratio of the clamping force (or
moment) to the maximum clamping force (or moment). A series of these functions for p = 2 and
various « is shown in Fig. 2. The p parameter primarily adjusts the magnitude of the stiffness
function at f = 1, which corresponds to the maximum clamping force or moment possible (both
theoretically infinite in the idealized “‘fully clamped” boundary condition). The x parameter

nondimensional stiffness function, K(f)
o
|
——

0

T T T T
1.0 0.8 0.6 0.4 0.2 0.0
nondimensional clamping force or moment, f

Fig. 2. Proposed non-linear stiffness function K(f) used to describe the clamping force transition.
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adjusts the rate at which the stiffness changes, particularly at extremes in clamping force near the
minimum (f = 0) or the maximum (f = 1). It should be noted that the horizontal axis is plotted in
reverse, to indicate that normally a fastened joint begins life at maximum clamping force and
moment and loses that functionality over time as discussed previously.

It is noted that the stiffness function, particularly at larger ., is flat for a large spectrum of non-
extreme clamping loads. In the experiment to be discussed shortly, springs were used in place of
fasteners so that better control of the clamping force was retained. The springs themselves are
fairly linear over a wide region of compression, but as the extremes of a fully compressed state or a
fully non-compressed state are approached, the springs behave non-linearly with rapid effective
stiffness changes over a very short distance. This behavior exactly mimics the function K,
particularly for larger x: the springs behave linearly over a wide region (K = 1 in that region) with
rapid effective stiffness increases and decreases at full compression and no compression. For
perfectly idealized linear springs, K would be unity for all clamping forces or moments. Thus, the
expressions for the boundary conditions in Egs. (5) could be modified to give

Wi = —Kyoawy, Wiy = Kﬁﬁw, (7)

where the nominal stiffnesses o and f§ have been modified by corresponding functions K, and Kp
to reflect the non-linear stiffness effects. In this reformulation, o and f are now interpreted as
constants that scale the flat region of K, and all stiffness variation is contained within K. These
boundary conditions, with the new non-linear stiffness function, are now not easily satisfied,
because the function K varies as w changes during vibration (i.e., the non-linear stiffness function
depends on the displacement w itself). However, if the vibrations are assumed small, then no
appreciable stiffness change occurs during the vibration except at the very extremes of the spring
compression range. Thus, a “‘quasi-linear”” boundary condition exists in the sense that for a given
initial, static spring compression, K is assumed constant.

2.2. Solution results

Now that the boundary condition model has been established, the problem may be solved by
usual modal expansion methods. In the experiment, the springs were controlled at only the x = 1
boundary, the springs at x =0 were left fully compressed such that the idealized clamped
boundary condition applies. Assuming that w(x, 7) = ¢>(x)eikz’ , Egs. (1) and (7) are reduced to the
eigenvalue problem

Prx =KD, 0) =0, $(0)=0, ¢ (1) = —Kap (1), ¢(1)=Kghd(1). (8
The solution to this problem is
¢(x) = sin kx — sinh kx + C(cos kx — cosh kx),

_ k’(cos k + cosh k) + Kgf(sin k — sinh k)

k3(sin k — sinh k) + Kgf(cosh k — cos k)’
where the values of k are taken to be the roots of the characteristic equation

K,oKgf + k* + k(Ksp — k*K,) cos k sinh k

+ cosh k((k* — K,aKpp) cos k + k(Kgf + k*K,) sin k) = 0. (10)

©)
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It is readily shown that under the idealized limiting cases of fully clamped (K,x, Kgf— c0) and
fully free (K,«, Kgp—0) boundary constraints, the characteristic equation reduces to the familiar
expressions

1 —coskcoshk =0, 1+4coskcoshk=0, (11)

respectively.

3. Experimental system and procedure

A physical representation of the model is shown in Fig. 3. An aluminum beam measuring
5% 107! m in length, 5 x 1072 m in width, and 3.175 x 10~* m in thickness was attached to rigid
supports at both ends with a bolt-and-spring assembly as shown. Each spring had a linear spring
constant of 64.6 N m~! and relaxed length of 2.0 cm. Four nominally identical spring-and-bolt
assemblies were used at each boundary of the beam. On one boundary, all the springs were
tightened to a fully compressed condition (nominal spring length of 0.55 cm) such that the

& spring-loaded
sboundaries
rigid
support

spring on
each sides

rigid
support

Fig. 3. Photograph of (a) the experimental beam and (b) a close-up photograph of the spring-and-bolt assembly used to
control clamping force.
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idealized clamped boundary condition was realized. Tightening or loosening the bolts on the other
boundary results in compression or elongation of the springs on both sides of the beam and thus
serves as a means of controlling the clamping force. Thirteen different compression lengths
(clamping force levels) were tested, from the fully compressed state to a final idealized “‘free”
condition, where the springs and bolt were completely removed.

Impact modal testing was performed at each clamping force level, using a multiple-input/single-
output (MISO) approach. The beam was divided into equal segments of 5 cm giving a total of 10
points, including the spring-constrained end. The eighth point, located 40 cm from the clamped
end, was used to measure the beam’s response to impact excitation, while the remaining nine
points served as the locations at which the impact was applied. The response location was chosen
so as to avoid taking measurements at a node for the first five predicted modes. Excitation was
provided by means of an Endevco modal hammer, and response data were acquired using an
Ometron VH300+™ single-point Laser Doppler Vibrometer (LDV). Both the excitation and
response signals were recorded simultaneously using the PULSE™ Multi-analyzer system from
Bruel and Kjaer at a sampling rate of 2048 Hz. The beam was struck ten times at each of the
impact locations, and the results were averaged in PULSE to obtain one frequency response
function (FRF) using the H,; estimator for each of the nine excitation/response pairs. As a result
of the averaging process, the bandwidth of the sampled data was reduced to 800 Hz. This testing
procedure was repeated at each of the clamping force levels for a total of 13 x 9 = 117 frequency
response measurements. For each FRF, a peak detection algorithm was used to track the first five
resonant frequencies. Although frequency information alone could have been extracted with a
single-input/single-output (SISO) approach, the current method is required for obtaining mode
shape data. Mode shape estimates were obtained by means of an eigensystem realization
algorithm [10]. In this procedure, each of the nine FRFs were used to build a state-space model of
the dynamics, and the eigenvectors of the state matrix may be scaled to obtain the mode shape
estimates. In this work, the mode shapes were scaled such that the maximum nodal excursion was
unity.

4. Results and discussion

The first five resonances identified by this experimental procedure, along with the
corresponding resonances predicted by the model, are shown in Fig. 4 under decreasing clamping
force p (non-dimensionalized by EI/L?). Similarly, the first five mode shapes are shown in
Figs. 5-9. For the springs and beam used, f = 1.71 x 10'. Little moment resistance was observed
by the bolt-and-spring assembly except near the full compression state, so « was made arbitrarily
small (order 10~7); in this way, the moment resistance effects will only be significant near the fully
compressed state. For both stiffness functions K, and Kp, the tuning parameters were chosen to be
p =2 x 10% and k = 25 to give a large clamping force and moment at the full compression level
and considerably rapid transition at the stiffness ““boundary layer” extremes (full compression
and no compression, or no springs at all).

The experimental and predicted frequency and mode shape data match very well across the full
clamping force range. Fig. 4 is plotted with decreasing non-dimensionalized clamping force from
left to right, again to imply the normal transition of fastener joints from maximum clamping to
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Fig. 4. The trend in the first five identified resonant frequencies as the clamping force is varied. Solid lines indicate
theory and dashed lines with unfilled circles indicate experiment.
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Fig. 6. The trend in the second identified mode shape as the clamping force is varied: (a) p = o0; (b) p = 0.46;
() p=0.41;(d) p=0.39; (e) p=0.37; (f) p =0.36; (g) p=0.34; (h) p =0.27; (i) p = 0.21; (j) p = 0.14; (k) p = 0.07;
(1) p=0.03; (m) p =0. Solid lines with filled circles indicate theory and dashed lines with unfilled circles indicate
experiment.

progressively loosened conditions. The lack of agreement in the fifth resonance at large clamping
loads is due to hardware limitations; the 800 Hz Nyquist frequency in the experiment was not
sufficient to identify that resonance at the higher clamping levels. As the clamping loads are
reduced, the frequencies do not change significantly and then rapidly drop as a critical clamping

<

Fig. 5. The trend in the first identified mode shape as the clamping force is varied: (a) p = o0; (b) p = 0.46; (c) p = 0.41;
(d)p=0.39;(e)p=0.37 () p =0.36;(g) p = 0.34; (h) p = 0.27; (1) p = 0.21; () p = 0.14; (k) p = 0.07; (1) p = 0.03; (m)
p = 0. Solid lines with filled circles indicate theory and dashed lines with unfilled circles indicate experiment.
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-1.0

0.0 015 1.0
Fig. 7. The trend in the third identified mode shape as the clamping force is varied: (a) p = o0; (b) p = 0.46;
() p=0.41;(d) p=0.39; (e) p =0.37; (f) p =0.36; (g) p=0.34; (h) p =0.27; (i) p = 0.21; (j) p = 0.14; (k) p = 0.07;
(1) p=0.03; (m) p =0. Solid lines with filled circles indicate theory and dashed lines with unfilled circles indicate
experiment.

load is reached. After further load reduction, the frequencies again do not change appreciably,
even after the clamping load is completely removed (a free boundary condition). Very similar
behavior may be observed in all the identified mode shapes, where again the fifth mode could not
be identified at larger clamping forces due to Nyquist limitations. In the mode figures, the
clamping force level is indicated by a number in the lower left corner, with ““1” meaning fully
clamped and “13” meaning fully free.

The sudden transition of the modal parameters at some critical clamping force, with relatively
insensitive fluctuation both pre- and post-critical, suggests that resonances and mode shapes may
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Fig. 8. The trend in the fourth identified mode shape as the clamping force is varied: (a) p = o0; (b) p = 0.46;
() p=0.41;(d) p=0.39; (e) p =0.37; (f) p =0.36; (g) p=0.34; (h) p =0.27; (i) p = 0.21; (j) p = 0.14; (k) p = 0.07;
(1) p=0.03; (m) p =0. Solid lines with filled circles indicate theory and dashed lines with unfilled circles indicate
experiment.

not be ideal candidates for vibration-based structural health monitoring features. Ideal features in
this application should typically track linearly or nearly so with the damage scenario (clamping
force loss in this study), so that the inverse problem (using the modal properties to classify the
joint clamp force) is tractable. The resonant frequencies and mode shapes at the fully clamped
condition are sufficiently close to the same properties measured just before the large shift,
meaning that there is little ability to classify the data according to clamping force. This would be
especially true in a less-controlled environment, where the modal properties may be significantly
more ‘“noisy”’ and less robustly identifiable. In fact, the variability in joint damping with
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Fig. 9. The trend in the fifth identified mode shape as the clamping force is varied: (a) p = o0; (b) p = 0.46; (c) p = 0.41;
(d)p =0.39; (e) p =0.37; () p = 0.36; (g) p = 0.34; (h) p = 0.27; (1) p = 0.21; (j) p = 0.14; (k) p = 0.07; (1) p = 0.03; (m)
p = 0. Solid lines with filled circles indicate theory and dashed lines with unfilled circles indicate experiment.

lubrication, environmental condition, and other factors themselves may dominate such that
operational variability exceeds changes induced by connectivity loss. Finally, the existence of a
sudden shift in the modal properties leaves little recourse for building in safety factors into any
prognostic capability which may be developed.

5. Summary

A simple experiment has been conducted on a beam whose boundaries were constrained by
fasteners. The fastener joints were modified with springs in such as way as to more precisely
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control the clamping force over a wide dynamic range and determine how the beam’s global
resonances and mode shapes change as the clamping force changes. A simple non-linear model
was also developed to describe this behavior, and the model’s predictions agreed very well with the
experimental observations. The model takes a global joint stiffness approach which seeks only to
capture direct clamping force effects and neglects out of plane effects such as friction. Although
the model and experiment were conducted under elastic (in a literal sense) loading conditions
only, the non-linear stiffness trend matches conditions observed during elastic-to-plastic transition
of real bolted assemblies that lead to clamping force degradation. The observed trends in the
modal properties suggest that they are relatively insensitive to changes in clamping force, except
near a critical clamping force where an abrupt change in the eigenstate occurs. This insensitivity
may lead to poor prognostic capability if the modal properties are being used to track joint
functionality loss for either maintenance or repair applications.

One possible alternative to modal analysis for detecting joint degradation has been recently
discussed in the literature by Nichols et al. [11,12]. This method imparts a chaotic waveform into
the structure and builds geometric attractor maps between various sensor pairs. As the joint
preload decreases, the subtle relative dynamics induced between the fastened members was
detected as an increased error metric describing the ability for one sensor on one side of the joint
to predict, or model, a sensor response from the other side. This idea is akin to studying
correlation functions, but it is done with state space geometric correlation rather than linear
temporal correlation. Results from the cited studies have shown an improvement in minimum
load loss detectability over other methods, less energy being input into the structure, and less non-
linear progression in the feature with continued degradation.
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